R. G. Gillies, G. C. Hussey, G. J. Sofko, P. V. Ponomarenko, and K. A. McWilliams

SuperDARN Workshop 2011 30 May- 3 June Dartmouth College, Hanover, New Hampshire, USA

- Introduction
- Velocity comparisons
- Determining electron density in scattering volume
- The RRI instrument on ePOP
- Conclusions

Doppler Velocities in a Refractive Medium

- SuperDARN measures Doppler shift of ionospheric echo
- Velocity of a scatterer, v_s, is:

$$v_{s} = \frac{1}{2} \frac{\Delta f_{D}}{f} \frac{c}{n_{s}}$$

▶ Refractive index, *n_s*, has not been taken into account:

$$n_s = \sqrt{1 - f_p^2/f^2}$$

▶ Because n_s <1.0, SuperDARN underestimates velocity

SuperDARN Velocity Comparisons

- Line-of-sight velocities compared:
 - Hankasalmi and EISCAT (1995–1999)
 - Various SuperDARN radars and DMSP (1999–2003)

Refractive index estimates

Velocity comparisons

- Problem: accurate refractive index estimates necessary for SuperDARN velocity measurements
- Solutions:
 - instruments to measure electron density (N_e)
 - elevation angle measurements by SuperDARN
 - International Reference Ionosphere (IRI) N_e values

Velocity comparisons

Velocity Comparison

- SuperDARN velocities ~20% too low on average
- ▶ Typical average (background) $n_s \sim 0.9$ (from IRI)
- Velocities only improved by 10%
- ► Theory: *N_e* in scattering volume of SuperDARN higher than background (and n_s lower)

Electron density estimates of the radar scattering volume

Gillies et al. ISAS Dept. of PEP

Frequency shifting

 \triangleright Velocity measured by SuperDARN v_m is lower than actual line-of-sight velocity v_s by a factor equal to refractive index ns

$$v_m = v_s n_s$$

$$v_m = v_s \sqrt{1 - f_p^2/f^2}$$

- Change of f causes change of v_m
- A measure of Δv_m from Δf gives estimate of f_D

ISAS

Frequency Shifting Analysis

- SuperDARN radars routinely change frequency
- All SuperDARN data used (nearly 20 years, over 20 radars)
- Frequency shifts of >0.5 MHz examined
- Superposed epoch analysis of velocities before and after shifts performed

ISAS

Gillies et al. ISAS Dept. of PEP UNIVERSIT

RRI-SuperDARN experiment

Gillies et al.

50

60

70

Gillies et al.

ISAS Dept. of PEP

80

-250

30

40

- Less-than-unity n_s causes underestimation of line-of-sight velocities by SuperDARN
- Various methods have been developed to estimate refractive index
- Results indicate that electron density in SuperDARN scattering volume is significantly higher than background
- Application of new measured refractive index values from frequency shifting analysis improves velocities
- ePOP measurements of scattering volume are greatly anticipated

